Cargando…
Training a machine learning classifier to identify ADHD based on real-world clinical data from medical records
The diagnostic process of attention deficit hyperactivity disorder (ADHD) is complex and relies on criteria sensitive to subjective biases. This may cause significant delays in appropriate treatment initiation. An automated analysis relying on subjective and objective measures might not only simplif...
Autores principales: | Mikolas, Pavol, Vahid, Amirali, Bernardoni, Fabio, Süß, Mathilde, Martini, Julia, Beste, Christian, Bluschke, Annet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334289/ https://www.ncbi.nlm.nih.gov/pubmed/35902654 http://dx.doi.org/10.1038/s41598-022-17126-x |
Ejemplares similares
-
Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls
por: Vahid, Amirali, et al.
Publicado: (2019) -
Neurophysiological mechanisms of interval timing dissociate inattentive and combined ADHD subtypes
por: Bluschke, Annet, et al.
Publicado: (2018) -
Intact Stimulus–Response Conflict Processing in ADHD—Multilevel Evidence and Theoretical Implications
por: Bluschke, Annet, et al.
Publicado: (2020) -
A novel approach to intra-individual performance variability in ADHD
por: Bluschke, Annet, et al.
Publicado: (2020) -
The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback
por: Bluschke, Annet, et al.
Publicado: (2016)