Cargando…

Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females

Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consist...

Descripción completa

Detalles Bibliográficos
Autores principales: Garnham, Laura Clare, Boddington, Robert, Løvlie, Hanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334373/
https://www.ncbi.nlm.nih.gov/pubmed/35122185
http://dx.doi.org/10.1007/s10071-022-01598-5
Descripción
Sumario:Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by  inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10071-022-01598-5.