Cargando…
ISX-9 potentiates CaMKIIδ-mediated BMAL1 activation to enhance circadian amplitude
Circadian dysregulation associates with numerous diseases including metabolic dysfunction, sleep disorder, depression and aging. Given that declined circadian amplitude is a trait commonly found with compromised health, interventions that design in precluding circadian amplitude from dampening will...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334596/ https://www.ncbi.nlm.nih.gov/pubmed/35902736 http://dx.doi.org/10.1038/s42003-022-03725-x |
Sumario: | Circadian dysregulation associates with numerous diseases including metabolic dysfunction, sleep disorder, depression and aging. Given that declined circadian amplitude is a trait commonly found with compromised health, interventions that design in precluding circadian amplitude from dampening will aid to mitigate complex, circadian-related diseases. Here we identify a neurogenic small molecule ISX-9 that is able to support persistent and higher amplitude of circadian oscillations. ISX-9 improves diurnal metabolic rhythms in middle-aged mice. Moreover, the ISX-9-treated mice show better sleep homeostasis with increased delta power during the day time and higher locomotive activity in the dark period. ISX-9 augments CaMKIIδ expression and increases BMAL1 activity via eliciting CaMKIIδ-mediated phosphorylation on BMAL1 residues S513/S515/S516, accordingly composes a positive feedback effect on enhancing circadian amplitude. CaMKIIδ-targeting, and the use of ISX-9 may serve as decent choices for treating circadian-related disorders. |
---|