Cargando…

Center-environment feature models for materials image segmentation based on machine learning

Materials properties depend not only on their compositions but also their microstructures under various processing conditions. So far, the analyses of complex microstructure images rely mostly on human experience, lack of automatic quantitative characterization methods. Machine learning provides an...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Yuexing, Li, Ruiqi, Yang, Shen, Chen, Qiaochuan, Wang, Bing, Liu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334618/
https://www.ncbi.nlm.nih.gov/pubmed/35902655
http://dx.doi.org/10.1038/s41598-022-16824-w
Descripción
Sumario:Materials properties depend not only on their compositions but also their microstructures under various processing conditions. So far, the analyses of complex microstructure images rely mostly on human experience, lack of automatic quantitative characterization methods. Machine learning provides an emerging vital tool to identify various complex materials phases in an intelligent manner. In this work, we propose a “center-environment segmentation” (CES) feature model for image segmentation based on machine learning method with environment features and the annotation input of domain knowledge. The CES model introduces the information of neighbourhood as the features of a given pixel, reflecting the relationships between the studied pixel and its surrounding environment. Then, an iterative integrated machine learning method is adopted to train and correct the image segmentation model. The CES model was successfully applied to segment seven different material images with complex texture ranging from steels to woods. The overall performance of the CES method in determining boundary contours is better than many conventional methods in the case study of the segmentation of steel image. This work shows that the iterative introduction of domain knowledge and environment features improve the accuracy of machine learning based image segmentation for various complex materials microstructures.