Cargando…
Center-environment feature models for materials image segmentation based on machine learning
Materials properties depend not only on their compositions but also their microstructures under various processing conditions. So far, the analyses of complex microstructure images rely mostly on human experience, lack of automatic quantitative characterization methods. Machine learning provides an...
Autores principales: | Han, Yuexing, Li, Ruiqi, Yang, Shen, Chen, Qiaochuan, Wang, Bing, Liu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334618/ https://www.ncbi.nlm.nih.gov/pubmed/35902655 http://dx.doi.org/10.1038/s41598-022-16824-w |
Ejemplares similares
-
Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation Tool: Machine-Learning-Enabled Segmentation on Features of Panoramic Radiographs
por: Kanuri, Nitin, et al.
Publicado: (2022) -
Prediction and Construction of Energetic Materials Based on Machine Learning Methods
por: Zang, Xiaowei, et al.
Publicado: (2022) -
Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation
por: Tangaro, Sabina, et al.
Publicado: (2015) -
A segmentation model to detect cevical lesions based on machine learning of colposcopic images
por: Li, Zhen, et al.
Publicado: (2023) -
Feature Selection in Machine Learning for Perovskite Materials Design and Discovery
por: Wang, Junya, et al.
Publicado: (2023)