Cargando…
Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
CMOS-based computing systems that employ the von Neumann architecture are relatively limited when it comes to parallel data storage and processing. In contrast, the human brain is a living computational signal processing unit that operates with extreme parallelism and energy efficiency. Although num...
Autores principales: | Kireev, Dmitry, Liu, Samuel, Jin, Harrison, Patrick Xiao, T., Bennett, Christopher H., Akinwande, Deji, Incorvia, Jean Anne C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334620/ https://www.ncbi.nlm.nih.gov/pubmed/35902599 http://dx.doi.org/10.1038/s41467-022-32078-6 |
Ejemplares similares
-
Graphene-Based Biosensor for Early Detection of Iron Deficiency
por: Oshin, Oluwadamilola, et al.
Publicado: (2020) -
Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors
por: Shim, Hyunseok, et al.
Publicado: (2022) -
Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems
por: Tanim, Md Mehedi Hasan, et al.
Publicado: (2023) -
Biocompatible Casein Electrolyte-Based Electric-Double-Layer for Artificial Synaptic Transistors
por: Kim, Hwi-Su, et al.
Publicado: (2022) -
Synaptic transistors based on a tyrosine-rich peptide for neuromorphic computing
por: Song, Min-Kyu, et al.
Publicado: (2021)