Cargando…
Inverse design of compact power divider with arbitrary outputs for 5G applications
Since the recent on-demand applications need more sophisticated circuits and subsystems, components with configurable capabilities attract attention more than before in commercial systems, specifically the fifth generation (5G). Power dividers play a crucial role in 5G phased array systems, and thei...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334630/ https://www.ncbi.nlm.nih.gov/pubmed/35902658 http://dx.doi.org/10.1038/s41598-022-17212-0 |
Sumario: | Since the recent on-demand applications need more sophisticated circuits and subsystems, components with configurable capabilities attract attention more than before in commercial systems, specifically the fifth generation (5G). Power dividers play a crucial role in 5G phased array systems, and their role becomes more significant if the output powers ratio is adjustable. Here, we suggest a design methodology by which planar power splitters with arbitrary output power levels can be designed in light of very simple perturbations, i.e., vias. Through our design procedure, we find an optimized pattern for hybrid vias-some of them are made of PEC, and others are dielectric, e.g., air, high-permittivity materials. Thanks to deep neural networks, we demonstrate that this technique can be employed to design power splitters whose output ports have different amplitudes. In light of the proposed method, we fabricated and measured a 4-way power divider realizing Chebyshev coefficients for sidelobe reduction of a 4-element array at 28 GHz as a proof-of-concept. We believe that this methodology in which hybrid perturbation is the key spot paves a way to implement complex functions in various platforms and other structures, e.g., SIWs, ridge waveguides, rather than the one we investigated (planar/microstrip). |
---|