Cargando…
Quality of reporting in AI cardiac MRI segmentation studies – A systematic review and recommendations for future studies
BACKGROUND: There has been a rapid increase in the number of Artificial Intelligence (AI) studies of cardiac MRI (CMR) segmentation aiming to automate image analysis. However, advancement and clinical translation in this field depend on researchers presenting their work in a transparent and reproduc...
Autores principales: | Alabed, Samer, Maiter, Ahmed, Salehi, Mahan, Mahmood, Aqeeb, Daniel, Sonali, Jenkins, Sam, Goodlad, Marcus, Sharkey, Michael, Mamalakis, Michail, Rakocevic, Vera, Dwivedi, Krit, Assadi, Hosamadin, Wild, Jim M., Lu, Haiping, O’Regan, Declan P., van der Geest, Rob J., Garg, Pankaj, Swift, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334661/ https://www.ncbi.nlm.nih.gov/pubmed/35911553 http://dx.doi.org/10.3389/fcvm.2022.956811 |
Ejemplares similares
-
A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension
por: Mamalakis, Michail, et al.
Publicado: (2023) -
How should studies using AI be reported? lessons from a systematic review in cardiac MRI
por: Maiter, Ahmed, et al.
Publicado: (2023) -
The Role of Artificial Intelligence in Predicting Outcomes by Cardiovascular Magnetic Resonance: A Comprehensive Systematic Review
por: Assadi, Hosamadin, et al.
Publicado: (2022) -
Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning
por: Sharkey, Michael J., et al.
Publicado: (2022) -
Validation of Artificial Intelligence Cardiac MRI Measurements:
Relationship to Heart Catheterization and Mortality Prediction
por: Alabed, Samer, et al.
Publicado: (2022)