Cargando…

DSMZCellDive: Diving into high-throughput cell line data

Human and animal cell lines serve as model systems in a wide range of life sciences such as cancer and infection research or drug screening. Reproducible data are highly dependent on authenticated, contaminant-free cell lines, no better delivered than by the official and certified biorepositories. O...

Descripción completa

Detalles Bibliográficos
Autores principales: Koblitz, Julia, Dirks, Wilhelm G., Eberth, Sonja, Nagel, Stefan, Steenpass, Laura, Pommerenke, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334839/
https://www.ncbi.nlm.nih.gov/pubmed/35949917
http://dx.doi.org/10.12688/f1000research.111175.2
Descripción
Sumario:Human and animal cell lines serve as model systems in a wide range of life sciences such as cancer and infection research or drug screening. Reproducible data are highly dependent on authenticated, contaminant-free cell lines, no better delivered than by the official and certified biorepositories. Offering a web portal to high-throughput information on these model systems will facilitate working with and comparing to these references by data otherwise dispersed at different sources. We here provide DSMZCellDive to access a comprehensive data source on human and animal cell lines, freely available at celldive.dsmz.de. A wide variety of data sources are generated such as RNA-seq transcriptome data and STR (short tandem repeats) profiles. Several starting points ease entering the database via browsing, searching or visualising. This web tool is designed for further expansion on meta and high-throughput data to be generated in future. Explicated examples for the power of this novel tool include analysis of B-cell differentiation markers, homeo-oncogene expression, and measurement of genomic loss of heterozygosities by an enlarged STR panel of 17 loci. Sharing the data on cell lines by the biorepository itself will be of benefit to the scientific community  since it (1) supports the selection of appropriate model cell lines, (2) ensures reliability, (3) avoids misleading data, (4) saves on additional experimentals, and (5) serves as reference for genomic and gene expression data.