Cargando…

Aptasensor: Surface protein detection in case of coronavirus diagnosis

Coronavirus disease (COVID-19) pandemic has left a disastrous effect on the world wealth and human evolution. The recent outbreak of COVID-19 disease is an infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which belongs to the single-stranded,...

Descripción completa

Detalles Bibliográficos
Autores principales: Teradal, Nagappa L., Tandel, Ranjita D., Naik, Vishalkumar I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334990/
http://dx.doi.org/10.1016/B978-0-323-90280-9.00010-9
Descripción
Sumario:Coronavirus disease (COVID-19) pandemic has left a disastrous effect on the world wealth and human evolution. The recent outbreak of COVID-19 disease is an infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which belongs to the single-stranded, positive strand RNA viruses. SARS‑CoV‑2 are dangerous threat to public health, economics, and global disciples. Therefore, it is important to identify, isolate, and treat individuals at the early stages of the disease to control the spread. In the present scenario, various analytical tools are available for the detection of several kinds of viruses through the use of different types of biosensing technologies. During the last decades, biosensors have emerged as reliable analytical devices and provide new promising tool for the detection of viruses. Aptamers are ssDNA or RNA oligonucleosides selected by the technique of systematic evolution of ligands by exponential enrichment (SELEX). Aptamers can bind various targets from small molecules to cells or even tissues in the way of antibodies. Aptameric nanobiosensors are rapid and sensitive diagnostic platforms, capable of SARS-CoV-2 detection, which overcomes the limitations of the conventional techniques. This chapter presents the use of aptamers in the fabrication of biosensors for improved diagnosis of SARS-CoV-2 and the future perspectives are also discussed.