Cargando…
Selecting Representative Samples From Complex Biological Datasets Using K-Medoids Clustering
Rapid growth of single-cell sequencing techniques enables researchers to investigate almost millions of cells with diverse properties in a single experiment. Meanwhile, it also presents great challenges for selecting representative samples from massive single-cell populations for further experimenta...
Autores principales: | Li, Lei, Lan, Linda Yu-Ling, Huang, Lei, Ye, Congting, Andrade, Jorge, Wilson, Patrick C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335369/ https://www.ncbi.nlm.nih.gov/pubmed/35910222 http://dx.doi.org/10.3389/fgene.2022.954024 |
Ejemplares similares
-
A medoid-based deviation ratio index to determine the number of clusters in a dataset
por: Kariyam, et al.
Publicado: (2023) -
Clustering and Characterization of the Lactation Curves of Dairy Cows Using K-Medoids Clustering Algorithm
por: Lee, Mingyung, et al.
Publicado: (2020) -
Research on Segmenting E-Commerce Customer through an Improved K-Medoids Clustering Algorithm
por: Wu, Zengyuan, et al.
Publicado: (2022) -
K‐medoids clustering of hospital admission characteristics to classify severity of influenza virus infection
por: Leis, Aleda M., et al.
Publicado: (2023) -
Alignment-free clustering of transcription factor binding motifs using a genetic-k-medoids approach
por: Broin, Pilib Ó, et al.
Publicado: (2015)