Cargando…
Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature
OBJECTIVE: Develop a novel methodology to create a comprehensive knowledge graph (SuppKG) to represent a domain with limited coverage in the Unified Medical Language System (UMLS), specifically dietary supplement (DS) information for discovering drug-supplement interactions (DSI), by leveraging biom...
Autores principales: | Schutte, Dalton, Vasilakes, Jake, Bompelli, Anu, Zhou, Yuqi, Fiszman, Marcelo, Xu, Hua, Kilicoglu, Halil, Bishop, Jeffrey R., Adam, Terrence, Zhang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335448/ https://www.ncbi.nlm.nih.gov/pubmed/35709900 http://dx.doi.org/10.1016/j.jbi.2022.104120 |
Ejemplares similares
-
Broad-coverage biomedical relation extraction with SemRep
por: Kilicoglu, Halil, et al.
Publicado: (2020) -
Drug repurposing for COVID-19 via knowledge graph completion
por: Zhang, Rui, et al.
Publicado: (2021) -
Constructing a semantic predication gold standard from the biomedical literature
por: Kilicoglu, Halil, et al.
Publicado: (2011) -
Sortal anaphora resolution to enhance relation extraction from biomedical literature
por: Kilicoglu, Halil, et al.
Publicado: (2016) -
Normalizing Dietary Supplement Product Names Using the RxNorm Model
por: Vasilakes, Jake, et al.
Publicado: (2019)