Cargando…
Sparse spatially clustered coefficient model via adaptive regularization
Large spatial datasets with many spatial covariates have become ubiquitous in many fields in recent years. A question of interest is to identify which covariates are likely to influence a spatial response, and whether and how the effects of these covariates vary across space, including potential abr...
Autores principales: | Zhong, Yan, Sang, Huiyan, Cook, Scott J., Kellstedt, Paul M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335734/ https://www.ncbi.nlm.nih.gov/pubmed/35919543 http://dx.doi.org/10.1016/j.csda.2022.107581 |
Ejemplares similares
-
Pansharpening of WorldView-2 Data via Graph Regularized Sparse Coding and Adaptive Coupled Dictionary
por: Wang, Wenqing, et al.
Publicado: (2021) -
Accurate Sparse-Projection Image Reconstruction via Nonlocal TV Regularization
por: Zhang, Yi, et al.
Publicado: (2014) -
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization
por: Qi, Hongliang, et al.
Publicado: (2015) -
Adaptive Sampling Designs: Inference for Sparse and Clustered Populations
por: Seber, George A F, et al.
Publicado: (2013)