Cargando…
Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database
OBJECTIVES: To explore the heterogeneous disability trajectories and construct explainable machine learning models for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among the elderly Chinese at community level. METHODS: This study retrospec...
Autores principales: | Wu, Yafei, Xiang, Chaoyi, Jia, Maoni, Fang, Ya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336105/ https://www.ncbi.nlm.nih.gov/pubmed/35902789 http://dx.doi.org/10.1186/s12877-022-03295-x |
Ejemplares similares
-
Correction: Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database
por: Wu, Yafei, et al.
Publicado: (2023) -
Latent trajectories of frailty and risk prediction models among geriatric community dwellers: an interpretable machine learning perspective
por: Wu, Yafei, et al.
Publicado: (2022) -
Identifying typical trajectories in longitudinal data: modelling strategies and interpretations
por: Herle, Moritz, et al.
Publicado: (2020) -
Longitudinal Trajectories of Reading and Mathematics Achievement for Students With Learning Disabilities
por: Mattison, Richard E., et al.
Publicado: (2022) -
INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis
por: Zabeti, Hooman, et al.
Publicado: (2021)