Cargando…

Effects of electrode gap and electric potential on chlorine generation of electrolyzed deep ocean water

Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric potential on chlorine generation efficiency of electrolyzed deep o...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Guoo-Shyng Wang, Hsu, Shun-Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336669/
https://www.ncbi.nlm.nih.gov/pubmed/28911563
http://dx.doi.org/10.1016/j.jfda.2016.01.006
Descripción
Sumario:Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric potential on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. Results showed high electric efficiency at a low cell potential, and a high current density and high chlorine concentration at a high cell potential and low electrode gap. Current efficiency of the system was not significantly affected by electrode gap and electric potential. A small electrode gap reduced the required cell potential and resulted in high energy efficiency. The optimal choice of electrode gap and cell potential depends on the chlorine level of the electrolyzed deep ocean water to be produced, and a small electrode gap is preferred.