Cargando…
Inhibitory mechanism against oxidative stress of caffeic acid
The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid), so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taiwan Food and Drug Administration
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337298/ https://www.ncbi.nlm.nih.gov/pubmed/28911606 http://dx.doi.org/10.1016/j.jfda.2016.05.003 |
Sumario: | The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid), so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables, oils, and tea. CA is among the most potential and abundantly found in nature, hydroxycinnamic acids with the potential of antioxidant behavior. Reactive oxygen species produced as a result of endogenous processes can lead to pathophysiological disturbances in the human body. Foods containing phenolic substances are a potential source for free radical scavenging; these chemicals are known as antioxidants. This review is focused on CA’s structure, availability, and potential as an antioxidant along with its mode of action. A brief overview of the literature published about the prooxidant potential of caffeic acid as well as the future perspectives of caffeic acid research is described. CA can be effectively employed as a natural antioxidant in various food products such as oils. |
---|