Cargando…
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
Throughout the past few years, the Internet of Things (IoT) has grown in popularity because of its ease of use and flexibility. Cyber criminals are interested in IoT because it offers a variety of benefits for users, but it still poses many types of threats. The most common form of attack against Io...
Autores principales: | Fadel, Magdy M., El-Ghamrawy, Sally M., Ali-Eldin, Amr M. T., Hassan, Mohammed K., El-Desoky, Ali I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337696/ https://www.ncbi.nlm.nih.gov/pubmed/35905101 http://dx.doi.org/10.1371/journal.pone.0271436 |
Ejemplares similares
-
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Sazgar IoT: A Device-Centric IoT Framework and Approximation Technique for Efficient and Scalable IoT Data Processing
por: Yavari, Ali, et al.
Publicado: (2023) -
An AI-Driven Hybrid Framework for Intrusion Detection in IoT-Enabled E-Health
por: Wahab, Fazal, et al.
Publicado: (2022) -
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks
por: Rodríguez, Eva, et al.
Publicado: (2022) -
Towards an Explainable Universal Feature Set for IoT Intrusion Detection
por: Alani, Mohammed M., et al.
Publicado: (2022)