Cargando…
Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network
Drug–drug interactions (DDIs) can trigger unexpected pharmacological effects on the body, and the causal mechanisms are often unknown. Graph neural networks (GNNs) have been developed to better understand DDIs. However, identifying key substructures that contribute most to the DDI prediction is a ch...
Autores principales: | Yang, Ziduo, Zhong, Weihe, Lv, Qiujie, Yu-Chian Chen, Calvin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337739/ https://www.ncbi.nlm.nih.gov/pubmed/35974769 http://dx.doi.org/10.1039/d2sc02023h |
Ejemplares similares
-
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
Explaining compound activity predictions with a substructure-aware loss for graph neural networks
por: Amara, Kenza, et al.
Publicado: (2023) -
Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing
por: Zhong, Weihe, et al.
Publicado: (2023) -
Jets: Substructure
por: Chien, Yang-Ting
Publicado: (2020) -
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023)