Cargando…
Microbial nanocellulose biotextiles for a circular materials economy
The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing meth...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337796/ https://www.ncbi.nlm.nih.gov/pubmed/35979328 http://dx.doi.org/10.1039/d2va00050d |
_version_ | 1784759831925620736 |
---|---|
author | Schiros, Theanne N. Antrobus, Romare Farías, Delfina Chiu, Yueh-Ting Joseph, Christian Tay Esdaille, Shanece Sanchirico, Gwen Karen Miquelon, Grace An, Dong Russell, Sebastian T. Chitu, Adrian M. Goetz, Susanne Verploegh Chassé, Anne Marika Nuckolls, Colin Kumar, Sanat K. Lu, Helen H. |
author_facet | Schiros, Theanne N. Antrobus, Romare Farías, Delfina Chiu, Yueh-Ting Joseph, Christian Tay Esdaille, Shanece Sanchirico, Gwen Karen Miquelon, Grace An, Dong Russell, Sebastian T. Chitu, Adrian M. Goetz, Susanne Verploegh Chassé, Anne Marika Nuckolls, Colin Kumar, Sanat K. Lu, Helen H. |
author_sort | Schiros, Theanne N. |
collection | PubMed |
description | The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle. The unique molecular self-organization of microbial nanocellulose (MC) combined with bio-phosphorylation with a lecithin treatment yields a compostable material with superior mechanical and flame-retardant properties. Specifically, treatment of MC with a lecithin-phosphocholine emulsion makes sites available to modulate cellulose cross-linking through hydroxyl, phosphate and methylene groups, increasing the interaction between cellulose chains. The resultant bioleather exhibits enhanced tensile strength and high ductility. Bio-phosphorylation with lecithin also redirects the combustion pathway from levoglucosan production towards the formation of foaming char as an insulating oxygen barrier, for outstanding flame retardance. Controlled color modulation is demonstrated with natural dyes. Life cycle impact assessment reveals that MC bioleather has up to an order of magnitude lower carbon footprint than conventional textiles, and a thousandfold reduction in the carcinogenic impact of leather production. Eliminating the use of hazardous substances, these high performance materials disrupt linear production models and strategically eliminate its toxicity and negative climate impacts, with widespread application in fashion, interiors and construction. Importantly, the biotextile approach developed in this study demonstrates the potential of biofabrication coupled with green chemistry for a circular materials economy. |
format | Online Article Text |
id | pubmed-9337796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-93377962022-08-15 Microbial nanocellulose biotextiles for a circular materials economy Schiros, Theanne N. Antrobus, Romare Farías, Delfina Chiu, Yueh-Ting Joseph, Christian Tay Esdaille, Shanece Sanchirico, Gwen Karen Miquelon, Grace An, Dong Russell, Sebastian T. Chitu, Adrian M. Goetz, Susanne Verploegh Chassé, Anne Marika Nuckolls, Colin Kumar, Sanat K. Lu, Helen H. Env Sci Adv Chemistry The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle. The unique molecular self-organization of microbial nanocellulose (MC) combined with bio-phosphorylation with a lecithin treatment yields a compostable material with superior mechanical and flame-retardant properties. Specifically, treatment of MC with a lecithin-phosphocholine emulsion makes sites available to modulate cellulose cross-linking through hydroxyl, phosphate and methylene groups, increasing the interaction between cellulose chains. The resultant bioleather exhibits enhanced tensile strength and high ductility. Bio-phosphorylation with lecithin also redirects the combustion pathway from levoglucosan production towards the formation of foaming char as an insulating oxygen barrier, for outstanding flame retardance. Controlled color modulation is demonstrated with natural dyes. Life cycle impact assessment reveals that MC bioleather has up to an order of magnitude lower carbon footprint than conventional textiles, and a thousandfold reduction in the carcinogenic impact of leather production. Eliminating the use of hazardous substances, these high performance materials disrupt linear production models and strategically eliminate its toxicity and negative climate impacts, with widespread application in fashion, interiors and construction. Importantly, the biotextile approach developed in this study demonstrates the potential of biofabrication coupled with green chemistry for a circular materials economy. RSC 2022-05-27 /pmc/articles/PMC9337796/ /pubmed/35979328 http://dx.doi.org/10.1039/d2va00050d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Schiros, Theanne N. Antrobus, Romare Farías, Delfina Chiu, Yueh-Ting Joseph, Christian Tay Esdaille, Shanece Sanchirico, Gwen Karen Miquelon, Grace An, Dong Russell, Sebastian T. Chitu, Adrian M. Goetz, Susanne Verploegh Chassé, Anne Marika Nuckolls, Colin Kumar, Sanat K. Lu, Helen H. Microbial nanocellulose biotextiles for a circular materials economy |
title | Microbial nanocellulose biotextiles for a circular materials economy |
title_full | Microbial nanocellulose biotextiles for a circular materials economy |
title_fullStr | Microbial nanocellulose biotextiles for a circular materials economy |
title_full_unstemmed | Microbial nanocellulose biotextiles for a circular materials economy |
title_short | Microbial nanocellulose biotextiles for a circular materials economy |
title_sort | microbial nanocellulose biotextiles for a circular materials economy |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337796/ https://www.ncbi.nlm.nih.gov/pubmed/35979328 http://dx.doi.org/10.1039/d2va00050d |
work_keys_str_mv | AT schirostheannen microbialnanocellulosebiotextilesforacircularmaterialseconomy AT antrobusromare microbialnanocellulosebiotextilesforacircularmaterialseconomy AT fariasdelfina microbialnanocellulosebiotextilesforacircularmaterialseconomy AT chiuyuehting microbialnanocellulosebiotextilesforacircularmaterialseconomy AT josephchristiantay microbialnanocellulosebiotextilesforacircularmaterialseconomy AT esdailleshanece microbialnanocellulosebiotextilesforacircularmaterialseconomy AT sanchiricogwenkaren microbialnanocellulosebiotextilesforacircularmaterialseconomy AT miquelongrace microbialnanocellulosebiotextilesforacircularmaterialseconomy AT andong microbialnanocellulosebiotextilesforacircularmaterialseconomy AT russellsebastiant microbialnanocellulosebiotextilesforacircularmaterialseconomy AT chituadrianm microbialnanocellulosebiotextilesforacircularmaterialseconomy AT goetzsusanne microbialnanocellulosebiotextilesforacircularmaterialseconomy AT verploeghchasseannemarika microbialnanocellulosebiotextilesforacircularmaterialseconomy AT nuckollscolin microbialnanocellulosebiotextilesforacircularmaterialseconomy AT kumarsanatk microbialnanocellulosebiotextilesforacircularmaterialseconomy AT luhelenh microbialnanocellulosebiotextilesforacircularmaterialseconomy |