Cargando…

Microbial nanocellulose biotextiles for a circular materials economy

The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiros, Theanne N., Antrobus, Romare, Farías, Delfina, Chiu, Yueh-Ting, Joseph, Christian Tay, Esdaille, Shanece, Sanchirico, Gwen Karen, Miquelon, Grace, An, Dong, Russell, Sebastian T., Chitu, Adrian M., Goetz, Susanne, Verploegh Chassé, Anne Marika, Nuckolls, Colin, Kumar, Sanat K., Lu, Helen H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337796/
https://www.ncbi.nlm.nih.gov/pubmed/35979328
http://dx.doi.org/10.1039/d2va00050d
_version_ 1784759831925620736
author Schiros, Theanne N.
Antrobus, Romare
Farías, Delfina
Chiu, Yueh-Ting
Joseph, Christian Tay
Esdaille, Shanece
Sanchirico, Gwen Karen
Miquelon, Grace
An, Dong
Russell, Sebastian T.
Chitu, Adrian M.
Goetz, Susanne
Verploegh Chassé, Anne Marika
Nuckolls, Colin
Kumar, Sanat K.
Lu, Helen H.
author_facet Schiros, Theanne N.
Antrobus, Romare
Farías, Delfina
Chiu, Yueh-Ting
Joseph, Christian Tay
Esdaille, Shanece
Sanchirico, Gwen Karen
Miquelon, Grace
An, Dong
Russell, Sebastian T.
Chitu, Adrian M.
Goetz, Susanne
Verploegh Chassé, Anne Marika
Nuckolls, Colin
Kumar, Sanat K.
Lu, Helen H.
author_sort Schiros, Theanne N.
collection PubMed
description The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle. The unique molecular self-organization of microbial nanocellulose (MC) combined with bio-phosphorylation with a lecithin treatment yields a compostable material with superior mechanical and flame-retardant properties. Specifically, treatment of MC with a lecithin-phosphocholine emulsion makes sites available to modulate cellulose cross-linking through hydroxyl, phosphate and methylene groups, increasing the interaction between cellulose chains. The resultant bioleather exhibits enhanced tensile strength and high ductility. Bio-phosphorylation with lecithin also redirects the combustion pathway from levoglucosan production towards the formation of foaming char as an insulating oxygen barrier, for outstanding flame retardance. Controlled color modulation is demonstrated with natural dyes. Life cycle impact assessment reveals that MC bioleather has up to an order of magnitude lower carbon footprint than conventional textiles, and a thousandfold reduction in the carcinogenic impact of leather production. Eliminating the use of hazardous substances, these high performance materials disrupt linear production models and strategically eliminate its toxicity and negative climate impacts, with widespread application in fashion, interiors and construction. Importantly, the biotextile approach developed in this study demonstrates the potential of biofabrication coupled with green chemistry for a circular materials economy.
format Online
Article
Text
id pubmed-9337796
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-93377962022-08-15 Microbial nanocellulose biotextiles for a circular materials economy Schiros, Theanne N. Antrobus, Romare Farías, Delfina Chiu, Yueh-Ting Joseph, Christian Tay Esdaille, Shanece Sanchirico, Gwen Karen Miquelon, Grace An, Dong Russell, Sebastian T. Chitu, Adrian M. Goetz, Susanne Verploegh Chassé, Anne Marika Nuckolls, Colin Kumar, Sanat K. Lu, Helen H. Env Sci Adv Chemistry The synthesis and bottom-up assembly of nanocellulose by microbes offers unique advantages to tune and meet key design criteria—rapid renewability, low toxicity, scalability, performance, and degradability—for multi-functional, circular economy textiles. However, development of green processing methods that meet these criteria remains a major research challenge. Here, we harness microbial biofabrication of nanocellulose and draw inspiration from ancient textile techniques to engineer sustainable biotextiles with a circular life cycle. The unique molecular self-organization of microbial nanocellulose (MC) combined with bio-phosphorylation with a lecithin treatment yields a compostable material with superior mechanical and flame-retardant properties. Specifically, treatment of MC with a lecithin-phosphocholine emulsion makes sites available to modulate cellulose cross-linking through hydroxyl, phosphate and methylene groups, increasing the interaction between cellulose chains. The resultant bioleather exhibits enhanced tensile strength and high ductility. Bio-phosphorylation with lecithin also redirects the combustion pathway from levoglucosan production towards the formation of foaming char as an insulating oxygen barrier, for outstanding flame retardance. Controlled color modulation is demonstrated with natural dyes. Life cycle impact assessment reveals that MC bioleather has up to an order of magnitude lower carbon footprint than conventional textiles, and a thousandfold reduction in the carcinogenic impact of leather production. Eliminating the use of hazardous substances, these high performance materials disrupt linear production models and strategically eliminate its toxicity and negative climate impacts, with widespread application in fashion, interiors and construction. Importantly, the biotextile approach developed in this study demonstrates the potential of biofabrication coupled with green chemistry for a circular materials economy. RSC 2022-05-27 /pmc/articles/PMC9337796/ /pubmed/35979328 http://dx.doi.org/10.1039/d2va00050d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Schiros, Theanne N.
Antrobus, Romare
Farías, Delfina
Chiu, Yueh-Ting
Joseph, Christian Tay
Esdaille, Shanece
Sanchirico, Gwen Karen
Miquelon, Grace
An, Dong
Russell, Sebastian T.
Chitu, Adrian M.
Goetz, Susanne
Verploegh Chassé, Anne Marika
Nuckolls, Colin
Kumar, Sanat K.
Lu, Helen H.
Microbial nanocellulose biotextiles for a circular materials economy
title Microbial nanocellulose biotextiles for a circular materials economy
title_full Microbial nanocellulose biotextiles for a circular materials economy
title_fullStr Microbial nanocellulose biotextiles for a circular materials economy
title_full_unstemmed Microbial nanocellulose biotextiles for a circular materials economy
title_short Microbial nanocellulose biotextiles for a circular materials economy
title_sort microbial nanocellulose biotextiles for a circular materials economy
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337796/
https://www.ncbi.nlm.nih.gov/pubmed/35979328
http://dx.doi.org/10.1039/d2va00050d
work_keys_str_mv AT schirostheannen microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT antrobusromare microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT fariasdelfina microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT chiuyuehting microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT josephchristiantay microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT esdailleshanece microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT sanchiricogwenkaren microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT miquelongrace microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT andong microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT russellsebastiant microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT chituadrianm microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT goetzsusanne microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT verploeghchasseannemarika microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT nuckollscolin microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT kumarsanatk microbialnanocellulosebiotextilesforacircularmaterialseconomy
AT luhelenh microbialnanocellulosebiotextilesforacircularmaterialseconomy