Cargando…
Functional neuronal circuitry and oscillatory dynamics in human brain organoids
Human brain organoids replicate much of the cellular diversity and developmental anatomy of the human brain. However, the physiology of neuronal circuits within organoids remains under-explored. With high-density CMOS microelectrode arrays and shank electrodes, we captured spontaneous extracellular...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338020/ https://www.ncbi.nlm.nih.gov/pubmed/35906223 http://dx.doi.org/10.1038/s41467-022-32115-4 |
_version_ | 1784759877374050304 |
---|---|
author | Sharf, Tal van der Molen, Tjitse Glasauer, Stella M. K. Guzman, Elmer Buccino, Alessio P. Luna, Gabriel Cheng, Zhuowei Audouard, Morgane Ranasinghe, Kamalini G. Kudo, Kiwamu Nagarajan, Srikantan S. Tovar, Kenneth R. Petzold, Linda R. Hierlemann, Andreas Hansma, Paul K. Kosik, Kenneth S. |
author_facet | Sharf, Tal van der Molen, Tjitse Glasauer, Stella M. K. Guzman, Elmer Buccino, Alessio P. Luna, Gabriel Cheng, Zhuowei Audouard, Morgane Ranasinghe, Kamalini G. Kudo, Kiwamu Nagarajan, Srikantan S. Tovar, Kenneth R. Petzold, Linda R. Hierlemann, Andreas Hansma, Paul K. Kosik, Kenneth S. |
author_sort | Sharf, Tal |
collection | PubMed |
description | Human brain organoids replicate much of the cellular diversity and developmental anatomy of the human brain. However, the physiology of neuronal circuits within organoids remains under-explored. With high-density CMOS microelectrode arrays and shank electrodes, we captured spontaneous extracellular activity from brain organoids derived from human induced pluripotent stem cells. We inferred functional connectivity from spike timing, revealing a large number of weak connections within a skeleton of significantly fewer strong connections. A benzodiazepine increased the uniformity of firing patterns and decreased the relative fraction of weakly connected edges. Our analysis of the local field potential demonstrate that brain organoids contain neuronal assemblies of sufficient size and functional connectivity to co-activate and generate field potentials from their collective transmembrane currents that phase-lock to spiking activity. These results point to the potential of brain organoids for the study of neuropsychiatric diseases, drug action, and the effects of external stimuli upon neuronal networks. |
format | Online Article Text |
id | pubmed-9338020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93380202022-07-31 Functional neuronal circuitry and oscillatory dynamics in human brain organoids Sharf, Tal van der Molen, Tjitse Glasauer, Stella M. K. Guzman, Elmer Buccino, Alessio P. Luna, Gabriel Cheng, Zhuowei Audouard, Morgane Ranasinghe, Kamalini G. Kudo, Kiwamu Nagarajan, Srikantan S. Tovar, Kenneth R. Petzold, Linda R. Hierlemann, Andreas Hansma, Paul K. Kosik, Kenneth S. Nat Commun Article Human brain organoids replicate much of the cellular diversity and developmental anatomy of the human brain. However, the physiology of neuronal circuits within organoids remains under-explored. With high-density CMOS microelectrode arrays and shank electrodes, we captured spontaneous extracellular activity from brain organoids derived from human induced pluripotent stem cells. We inferred functional connectivity from spike timing, revealing a large number of weak connections within a skeleton of significantly fewer strong connections. A benzodiazepine increased the uniformity of firing patterns and decreased the relative fraction of weakly connected edges. Our analysis of the local field potential demonstrate that brain organoids contain neuronal assemblies of sufficient size and functional connectivity to co-activate and generate field potentials from their collective transmembrane currents that phase-lock to spiking activity. These results point to the potential of brain organoids for the study of neuropsychiatric diseases, drug action, and the effects of external stimuli upon neuronal networks. Nature Publishing Group UK 2022-07-29 /pmc/articles/PMC9338020/ /pubmed/35906223 http://dx.doi.org/10.1038/s41467-022-32115-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sharf, Tal van der Molen, Tjitse Glasauer, Stella M. K. Guzman, Elmer Buccino, Alessio P. Luna, Gabriel Cheng, Zhuowei Audouard, Morgane Ranasinghe, Kamalini G. Kudo, Kiwamu Nagarajan, Srikantan S. Tovar, Kenneth R. Petzold, Linda R. Hierlemann, Andreas Hansma, Paul K. Kosik, Kenneth S. Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title | Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title_full | Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title_fullStr | Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title_full_unstemmed | Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title_short | Functional neuronal circuitry and oscillatory dynamics in human brain organoids |
title_sort | functional neuronal circuitry and oscillatory dynamics in human brain organoids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338020/ https://www.ncbi.nlm.nih.gov/pubmed/35906223 http://dx.doi.org/10.1038/s41467-022-32115-4 |
work_keys_str_mv | AT sharftal functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT vandermolentjitse functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT glasauerstellamk functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT guzmanelmer functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT buccinoalessiop functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT lunagabriel functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT chengzhuowei functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT audouardmorgane functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT ranasinghekamalinig functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT kudokiwamu functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT nagarajansrikantans functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT tovarkennethr functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT petzoldlindar functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT hierlemannandreas functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT hansmapaulk functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids AT kosikkenneths functionalneuronalcircuitryandoscillatorydynamicsinhumanbrainorganoids |