Cargando…
Exploring the parameters of central redox hub for screening salinity tolerant rice landraces of coastal Bangladesh
Regulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338030/ https://www.ncbi.nlm.nih.gov/pubmed/35906294 http://dx.doi.org/10.1038/s41598-022-17078-2 |
Sumario: | Regulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh grown under post imbibitional salinity stress (PISS) has been done through characterization of ROS-antioxidant interaction dynamics at metabolic interface, transcriptional reprogramming of redox-regulatory genes along with the assessment of biomarkers of oxidative threat for standardizing redox strategies and quality parameters for screening. The results exhibited a strong correlation between salinity induced redox status (pro-oxidant/antioxidant ratio, efficacy of H(2)O(2) turnover through integrated RboH-Ascorbate–Glutathione/Catalase pathway and estimation of sensitive redox biomarkers of oxidative deterioration) and germination phenotypes of all landraces of rice. Transcript abundance of the marker genes of the enzymes associated with central antioxidant hub for H(2)O(2) processing (CatA, OsAPx2, SodCc2, GRase and RboH) of all experimental landraces of the rice advocate the central role of H(2)O(2) turnover dynamics in regulating redox status and salinity tolerance. Landraces suffering greater loss of abilities of decisive regulation of H(2)O(2) turnover dynamics exhibited threat on the oxidative windows of the germinating seeds under salinity. |
---|