Cargando…
A deep learning framework for epileptic seizure detection based on neonatal EEG signals
Electroencephalogram (EEG) is one of the main diagnostic tests for epilepsy. The detection of epileptic activity is usually performed by a human expert and is based on finding specific patterns in the multi-channel electroencephalogram. This is a difficult and time-consuming task, therefore various...
Autores principales: | Gramacki, Artur, Gramacki, Jarosław |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338048/ https://www.ncbi.nlm.nih.gov/pubmed/35906248 http://dx.doi.org/10.1038/s41598-022-15830-2 |
Ejemplares similares
-
Old wine into new wineskins? “Legacy data” in research on Roman Period East Germanic iron smelting
por: Żabiński, Grzegorz, et al.
Publicado: (2023) -
A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals
por: Khan, Gul Hameed, et al.
Publicado: (2023) -
Nonparametric kernel density estimation and its computational aspects
por: Gramacki, Artur
Publicado: (2017) -
Deep-EEG: An Optimized and Robust Framework and Method for EEG-Based Diagnosis of Epileptic Seizure
por: Mir, Waseem Ahmad, et al.
Publicado: (2023) -
Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
por: Malekzadeh, Anis, et al.
Publicado: (2021)