Cargando…
Hand movements respond to any motion near the endpoint
Hand movements are pulled in the direction of motion near their planned endpoints. Is this an automatic response to motion signals near those positions, or do we consider what is moving? To find out, we asked participants to hit a target that moved rightward across a patterned surface when it reache...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338106/ https://www.ncbi.nlm.nih.gov/pubmed/35338448 http://dx.doi.org/10.3758/s13414-022-02471-w |
Sumario: | Hand movements are pulled in the direction of motion near their planned endpoints. Is this an automatic response to motion signals near those positions, or do we consider what is moving? To find out, we asked participants to hit a target that moved rightward across a patterned surface when it reached an interception zone that was indicated by a circle. The circle was initially at the center of a square. The square was either filled, occluding the patterned surface (tile), or open, such that the patterned surface was not occluded (frame). The square briefly moved leftward or rightward shortly after the target appeared. Thus, participants were either aiming to hit the target on the surface that moved (the tile) or to hit the target on the patterned surface that did not move. Moving the two types of squares produced very similar local motion signals, but for the tile this could be interpreted as motion of an extended surface, while for the frame it could not. Motion onset of the two types of squares yielded very similar responses. Increasing the size of the square, and thus the eccentricity of the local motion signal, reduced the magnitude of the response. Since this reduction was seen for both types of squares, the surface on which the interception zone was presented was clearly not considered. We conclude that the response is driven by local motion signals near the endpoint of the action without considering whether the local surface is moving. |
---|