Cargando…

Using an unmanned aerial system to analyse environmental impacts of charcoal production on tropical savanna ecosystems in northwestern Kenya

In many regions of Sub-Saharan Africa, charcoal plays an important role as energy source but is widely perceived as a major driver of deforestation and forest degradation. This narrative, however, is mostly based on research within primary production regions. Though space-borne remote sensing applic...

Descripción completa

Detalles Bibliográficos
Autores principales: Petersen, Maike, Nüsser, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338136/
https://www.ncbi.nlm.nih.gov/pubmed/35906445
http://dx.doi.org/10.1007/s10661-022-10241-2
Descripción
Sumario:In many regions of Sub-Saharan Africa, charcoal plays an important role as energy source but is widely perceived as a major driver of deforestation and forest degradation. This narrative, however, is mostly based on research within primary production regions. Though space-borne remote sensing applications can be useful in monitoring such large-scale production modes, environmental effects of household-level production are less easy to assess. Therefore, the present study employs an unmanned aerial system (UAS) to assess the impact of small-scale charcoal production on the vegetation density in the immediate vicinity of production sites. The UAS data was complemented by field measurements and very high-resolution WordView-2 satellite imagery. This approach revealed only small differences between charcoal production sites and reference plots which were usually evened out after 20–25-m distance to the plot centre using a concentric ring analysis. Results further show that a distinction between different land-use practices is difficult, even with the high spatial resolution provided by a UAS. Thus, more research and new approaches are needed to evaluate the role of small-scale charcoal production in deforestation and forest degradation processes against the background of other human activities. However, to exploit the full potential of UAS for monitoring environmental effects in charcoal producing areas, official regulations need to be clearer and more reliable. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10661-022-10241-2.