Cargando…
Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods
Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in variou...
Autores principales: | Li, Zitong, Liu, Shiming, Conaty, Warren, Zhu, Qian-Hao, Moncuquet, Philippe, Stiller, Warwick, Wilson, Iain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338257/ https://www.ncbi.nlm.nih.gov/pubmed/35523950 http://dx.doi.org/10.1038/s41437-022-00537-x |
Ejemplares similares
-
HairNet: a deep learning model to score leaf hairiness, a key phenotype for cotton fibre yield, value and insect resistance
por: Rolland, Vivien, et al.
Publicado: (2022) -
Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments
por: Gapare, Washington, et al.
Publicado: (2018) -
Cotton Breeding in Australia: Meeting the Challenges of the 21st Century
por: Conaty, Warren C., et al.
Publicado: (2022) -
Genetic Identification and Transcriptome Analysis of Lintless and Fuzzless Traits in Gossypium arboreum L.
por: Liu, Xueying, et al.
Publicado: (2020) -
Core Collections: Is There Any Value for Cotton Breeding?
por: Egan, Lucy Marie, et al.
Publicado: (2022)