Cargando…
Joint analysis of scATAC-seq datasets using epiConv
BACKGROUND: Technical improvement in ATAC-seq makes it possible for high throughput profiling the chromatin states of single cells. However, data from multiple sources frequently show strong technical variations, which is referred to as batch effects. In order to perform joint analysis across multip...
Autores principales: | Lin, Li, Zhang, Liye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338487/ https://www.ncbi.nlm.nih.gov/pubmed/35906531 http://dx.doi.org/10.1186/s12859-022-04858-w |
Ejemplares similares
-
A scATAC-seq atlas of chromatin accessibility in axolotl brain regions
por: Feng, Weimin, et al.
Publicado: (2023) -
Fast analysis of scATAC-seq data using a predefined set of genomic regions
por: Giansanti, Valentina, et al.
Publicado: (2020) -
scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
por: Yan, Xuhua, et al.
Publicado: (2023) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data
por: Zeng, Pengcheng, et al.
Publicado: (2022)