Cargando…

Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs

BACKGROUND: Disease resistance phenotypes are associated with immune regulatory functions and immune tolerance and have implications for both the livestock industry and human health. Microbiota plays an essential role in regulating immunity and autoimmunity in the host organism, but the influence of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xuan, Jiang, Lin, Fang, Xiuyu, Guo, Zhiqiang, Wang, Xiaoxu, Shi, Baoming, Meng, Qingwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338544/
https://www.ncbi.nlm.nih.gov/pubmed/35907917
http://dx.doi.org/10.1186/s40168-022-01303-1
_version_ 1784759992110284800
author Zhao, Xuan
Jiang, Lin
Fang, Xiuyu
Guo, Zhiqiang
Wang, Xiaoxu
Shi, Baoming
Meng, Qingwei
author_facet Zhao, Xuan
Jiang, Lin
Fang, Xiuyu
Guo, Zhiqiang
Wang, Xiaoxu
Shi, Baoming
Meng, Qingwei
author_sort Zhao, Xuan
collection PubMed
description BACKGROUND: Disease resistance phenotypes are associated with immune regulatory functions and immune tolerance and have implications for both the livestock industry and human health. Microbiota plays an essential role in regulating immunity and autoimmunity in the host organism, but the influence of host-microbiota interactions on disease resistance phenotypes remains unclear. Here, multiomics analysis was performed to identify potential regulatory mechanisms of disease resistance at both the microbiome and host levels in two pig breeds. RESULTS: Acute colitis models were established in Min pigs and Yorkshire pigs, and control and diseased individuals were compared. Compared with Yorkshire pigs under the same nutritional and management conditions, Min pigs exhibited strong disease resistance, as indicated by a low disease activity index (DAI) and a low histological activity index (HAI). Microbiota sequencing analysis showed that potentially harmful microbes Desulfovibrio, Bacteroides and Streptococcus were enriched in diseased individuals of the two breeds. Notably, potentially beneficial microbes, such as Lactobacillus, Clostridia and Eubacterium, and several genera belonging to Ruminococcaceae and Christensenellaceae were enriched in diseased Min pigs and were found to be positively associated with the microbial metabolites related to intestinal barrier function. Specifically, the concentrations of indole derivatives and short-chain fatty acids were increased in diseased Min pigs, suggesting beneficial action in protecting intestinal barrier. In addition, lower concentrations of bile acid metabolites and short-chain fatty acids were observed in diseased Yorkshire pigs, which were associated with increased potentially harmful microbes, such as Bilophila and Alistipes. Concerning enrichment of the immune response, the increase in CD4(+) T cells in the lamina propria improved supervision of the host immunity response in diseased Min pigs, contributing to the maintenance of Th2-type immune superiority and immune tolerance patterns and control of excessive inflammation with the help of potentially beneficial microbes. In diseased Yorkshire pigs, more terms belonging to biological processes of immunity were enriched, including Toll-like receptors signalling, NF-κB signalling and Th1 and Th17-type immune responses, along with the increases of potentially harmful microbes and damaged intestinal barrier. CONCLUSIONS: Cumulatively, the results for the two pig breeds highlight that host-microbiota crosstalk promotes a disease resistance phenotype in three ways: by maintaining partial PRR nonactivation, maintaining Th2-type immune superiority and immunological tolerance patterns and recovering gut barrier function to protect against colonic diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01303-1.
format Online
Article
Text
id pubmed-9338544
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-93385442022-07-31 Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs Zhao, Xuan Jiang, Lin Fang, Xiuyu Guo, Zhiqiang Wang, Xiaoxu Shi, Baoming Meng, Qingwei Microbiome Research BACKGROUND: Disease resistance phenotypes are associated with immune regulatory functions and immune tolerance and have implications for both the livestock industry and human health. Microbiota plays an essential role in regulating immunity and autoimmunity in the host organism, but the influence of host-microbiota interactions on disease resistance phenotypes remains unclear. Here, multiomics analysis was performed to identify potential regulatory mechanisms of disease resistance at both the microbiome and host levels in two pig breeds. RESULTS: Acute colitis models were established in Min pigs and Yorkshire pigs, and control and diseased individuals were compared. Compared with Yorkshire pigs under the same nutritional and management conditions, Min pigs exhibited strong disease resistance, as indicated by a low disease activity index (DAI) and a low histological activity index (HAI). Microbiota sequencing analysis showed that potentially harmful microbes Desulfovibrio, Bacteroides and Streptococcus were enriched in diseased individuals of the two breeds. Notably, potentially beneficial microbes, such as Lactobacillus, Clostridia and Eubacterium, and several genera belonging to Ruminococcaceae and Christensenellaceae were enriched in diseased Min pigs and were found to be positively associated with the microbial metabolites related to intestinal barrier function. Specifically, the concentrations of indole derivatives and short-chain fatty acids were increased in diseased Min pigs, suggesting beneficial action in protecting intestinal barrier. In addition, lower concentrations of bile acid metabolites and short-chain fatty acids were observed in diseased Yorkshire pigs, which were associated with increased potentially harmful microbes, such as Bilophila and Alistipes. Concerning enrichment of the immune response, the increase in CD4(+) T cells in the lamina propria improved supervision of the host immunity response in diseased Min pigs, contributing to the maintenance of Th2-type immune superiority and immune tolerance patterns and control of excessive inflammation with the help of potentially beneficial microbes. In diseased Yorkshire pigs, more terms belonging to biological processes of immunity were enriched, including Toll-like receptors signalling, NF-κB signalling and Th1 and Th17-type immune responses, along with the increases of potentially harmful microbes and damaged intestinal barrier. CONCLUSIONS: Cumulatively, the results for the two pig breeds highlight that host-microbiota crosstalk promotes a disease resistance phenotype in three ways: by maintaining partial PRR nonactivation, maintaining Th2-type immune superiority and immunological tolerance patterns and recovering gut barrier function to protect against colonic diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01303-1. BioMed Central 2022-07-30 /pmc/articles/PMC9338544/ /pubmed/35907917 http://dx.doi.org/10.1186/s40168-022-01303-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Zhao, Xuan
Jiang, Lin
Fang, Xiuyu
Guo, Zhiqiang
Wang, Xiaoxu
Shi, Baoming
Meng, Qingwei
Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title_full Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title_fullStr Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title_full_unstemmed Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title_short Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
title_sort host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338544/
https://www.ncbi.nlm.nih.gov/pubmed/35907917
http://dx.doi.org/10.1186/s40168-022-01303-1
work_keys_str_mv AT zhaoxuan hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT jianglin hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT fangxiuyu hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT guozhiqiang hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT wangxiaoxu hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT shibaoming hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs
AT mengqingwei hostmicrobiotainteractionmediatedresistancetoinflammatoryboweldiseaseinpigs