Cargando…
Detecting COVID-19 patients via MLES-Net deep learning models from X-Ray images
BACKGROUND: Corona Virus Disease 2019 (COVID-19) first appeared in December 2019, and spread rapidly around the world. COVID-19 is a pneumonia caused by novel coronavirus infection in 2019. COVID-19 is highly infectious and transmissible. By 7 May 2021, the total number of cumulative number of death...
Autores principales: | Wang, Wei, Jiang, Yongbin, Wang, Xin, Zhang, Peng, Li, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338656/ https://www.ncbi.nlm.nih.gov/pubmed/35907793 http://dx.doi.org/10.1186/s12880-022-00861-y |
Ejemplares similares
-
Detecting COVID-19 in Chest X-Ray Images via MCFF-Net
por: Wang, Wei, et al.
Publicado: (2021) -
Reflection as a Deliberative and Distributed Practice: Assessing Neuro-Enhancement Technologies via Mutual Learning Exercises (MLEs)
por: Zwart, Hub, et al.
Publicado: (2017) -
D2-CovidNet: A Deep Learning Model for COVID-19 Detection in Chest X-Ray Images
por: Wang, Xin, et al.
Publicado: (2021) -
mleS in Staphylococcus aureus Contributes to Microaerobic Metabolic Activity, Abscess Formation, and Survival in Macrophages
por: Chen, Fengning, et al.
Publicado: (2023) -
Deep efficient-nets with transfer learning assisted detection of COVID-19 using chest X-ray radiology imaging
por: Mzoughi, Hiba, et al.
Publicado: (2023)