Cargando…
Differences in the characteristics and pulmonary toxicity of nano- and micron-sized respirable coal dust
BACKGROUND: The characteristics of coal dust (CD) particles affect the inhalation of CD, which causes coal worker’s pneumoconiosis (CWP). CD nanoparticles (CD-NPs, < 500 nm) and micron particles (CD-MPs, < 5 μm) are components of the respirable CD. However, the differences in physicochemical p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338665/ https://www.ncbi.nlm.nih.gov/pubmed/35906696 http://dx.doi.org/10.1186/s12931-022-02120-8 |
Sumario: | BACKGROUND: The characteristics of coal dust (CD) particles affect the inhalation of CD, which causes coal worker’s pneumoconiosis (CWP). CD nanoparticles (CD-NPs, < 500 nm) and micron particles (CD-MPs, < 5 μm) are components of the respirable CD. However, the differences in physicochemical properties and pulmonary toxicity between CD-NPs and CD-MPs remain unclear. METHODS: CD was analyzed by scanning electron microscopy, Malvern nanoparticle size potentiometer, energy dispersive spectroscopy, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. CCK-8 assay, ELISA, transmission electron microscope, JC-1 staining, reactive oxygen species activity probe, calcium ion fluorescent probe, AO/EB staining, flow cytometry, and western blot were used to determine the differences between CD-NPs and CD-MPs on acute pulmonary toxicity. CCK-8, scratch healing and Transwell assay, hematoxylin–eosin and Masson staining, immunohistochemistry, immunofluorescence, and western blot were applied to examine the effects of CD-NPs and CD-MPs on pneumoconiosis. RESULTS: Analysis of the size distribution of CD revealed that the samples had been size segregated. The carbon content of CD-NPs was greater than that of CD-MPs, and the oxygen, aluminum, and silicon contents were less. In in vitro experiments with A549 and BEAS-2B cells, CD-NPs, compared with CD-MPs, had more inflammatory vacuoles, release of pro-inflammatory cytokines (IL-6, IL-1β, TNFα) and profibrotic cytokines (CXCL2, TGFβ1), mitochondrial damage (reactive oxygen species and Ca(2+) levels and decreased mitochondrial membrane potential), and cell death (apoptosis, pyroptosis, and necrosis). CD-NPs-induced fibrosis model cells had stronger proliferation, migration, and invasion than did CD-MPs. In in vivo experiments, lung coefficient, alveolar inflammation score, and lung tissue fibrosis score (mean: 1.1%, 1.33, 1.33) of CD-NPs were higher than those of CD-MPs (mean: 1.3%, 2.67, 2.67). CD-NPs accelerated the progression of pulmonary fibrosis by upregulating the expression of pro-fibrotic proteins and promoting epithelial–mesenchymal transition. The regulatory molecules involved were E-cadherin, N-cadherin, COL-1, COL-3, ZO-1, ZEB1, Slug, α-SMA, TGFβ1, and Vimentin. CONCLUSIONS: Stimulation with CD-NPs resulted in more pronounced acute and chronic lung toxicity than did stimulation with CD-MPs. These effects included acute inflammatory response, mitochondrial damage, pyroptosis, and necrosis, and more pulmonary fibrosis induced by epithelial–mesenchymal transition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-022-02120-8. |
---|