Cargando…

Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications

Microbial biofilms are ubiquitous. In marine and freshwater ecosystems, microbe–mineral interactions sustain biogeochemical cycles, while biofilms found on plants and animals can range from pathogens to commensals. Moreover, biofouling and biocorrosion represent significant challenges to industry. B...

Descripción completa

Detalles Bibliográficos
Autores principales: Conners, Eric M, Rengasamy, Karthikeyan, Bose, Arpita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338886/
https://www.ncbi.nlm.nih.gov/pubmed/35381088
http://dx.doi.org/10.1093/jimb/kuac012
Descripción
Sumario:Microbial biofilms are ubiquitous. In marine and freshwater ecosystems, microbe–mineral interactions sustain biogeochemical cycles, while biofilms found on plants and animals can range from pathogens to commensals. Moreover, biofouling and biocorrosion represent significant challenges to industry. Bioprocessing is an opportunity to take advantage of biofilms and harness their utility as a chassis for biocommodity production. Electrochemical bioreactors have numerous potential applications, including wastewater treatment and commodity production. The literature examining these applications has demonstrated that the cell–surface interface is vital to facilitating these processes. Therefore, it is necessary to understand the state of knowledge regarding biofilms’ role in bioprocessing. This mini-review discusses bacterial biofilm formation, cell–surface redox interactions, and the role of microbial electron transfer in bioprocesses. It also highlights some current goals and challenges with respect to microbe-mediated bioprocessing and future perspectives.