Cargando…
Using hierarchical unsupervised learning to integrate and reduce multi-level and multi-paraspinal muscle MRI data in relation to low back pain
PURPOSE: The paraspinal muscles (PSM) are a key feature potentially related to low back pain (LBP), and their structure and composition can be quantified using MRI. Most commonly, quantifying PSM measures across individual muscles and individual spinal levels renders numerous separate metrics that a...
Autores principales: | Torres-Espin, Abel, Keller, Anastasia, Johnson, Gabriel T. A., Fields, Aaron J., Krug, Roland, Ferguson, Adam R., Hargens, Alan R., O’Neill, Conor W., Lotz, Jeffrey C., Bailey, Jeannie F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338899/ https://www.ncbi.nlm.nih.gov/pubmed/35333958 http://dx.doi.org/10.1007/s00586-022-07169-z |
Ejemplares similares
-
Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain
por: Keller, Anastasia V., et al.
Publicado: (2022) -
Spatial distribution of fat infiltration within the paraspinal muscles: implications for chronic low back pain
por: Khattab, Karim, et al.
Publicado: (2022) -
Influence of patient‐specific factors when comparing multifidus fat infiltration between chronic low back pain patients and asymptomatic controls
por: Ballatori, Alexander M., et al.
Publicado: (2022) -
Paraspinal Muscle in Chronic Low Back Pain: Comparison Between Standard Parameters and Chemical Shift Encoding-Based Water–Fat MRI
por: Sollmann, Nico, et al.
Publicado: (2022) -
Compensatory biomechanics and spinal loading during dynamic maneuvers in patients with chronic low back pain
por: Nyayapati, Priya, et al.
Publicado: (2022)