Cargando…
Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis–Menten model
Nonlinear ordinary differential equations (ODEs) are common in pharmacokinetic–pharmacodynamic systems. Although their exact solutions cannot generally be determined via algebraic methods, their rapid and accurate solutions are desirable. Thus, numerical methods have a critical role. Inductive Linea...
Autores principales: | Sharif, Sepideh, Hasegawa, Chihiro, Duffull, Stephen B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338916/ https://www.ncbi.nlm.nih.gov/pubmed/35788853 http://dx.doi.org/10.1007/s10928-022-09813-z |
Ejemplares similares
-
Some lessons about models from Michaelis and Menten
por: Gunawardena, Jeremy
Publicado: (2012) -
Extensions to Michaelis-Menten Kinetics for Single Parameters
por: Ariyawansha, R. T. K., et al.
Publicado: (2018) -
Correction for Some lessons about models from Michaelis and Menten
Publicado: (2012) -
Implicit Analytic Solution of Michaelis–Menten–Monod
Kinetics
por: Maggi, Federico, et al.
Publicado: (2016) -
Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters
por: Choi, Boseung, et al.
Publicado: (2017)