Cargando…
Robust prediction of force chains in jammed solids using graph neural networks
Force chains are quasi-linear self-organised structures carrying large stresses and are ubiquitous in jammed amorphous materials like granular materials, foams or even cell assemblies. Predicting where they will form upon deformation is crucial to describe the properties of such materials, but remai...
Autores principales: | Mandal, Rituparno, Casert, Corneel, Sollich, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338954/ https://www.ncbi.nlm.nih.gov/pubmed/35908018 http://dx.doi.org/10.1038/s41467-022-31732-3 |
Ejemplares similares
-
Secure Transmission of Cooperative Zero-Forcing Jamming for Two-User SWIPT Sensor Networks
por: Tang, Xuanxuan, et al.
Publicado: (2018) -
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
Inversion of force lines in fiber-reinforced jammed granular material
por: Iliev, Pavel S., et al.
Publicado: (2021) -
Recognition of Micro-Motion Jamming Based on Complex-Valued Convolutional Neural Network
por: Shi, Chongwei, et al.
Publicado: (2023) -
Predicting chemical shifts with graph neural networks
por: Yang, Ziyue, et al.
Publicado: (2021)