Cargando…

Annealing effect of thermotropic liquid crystalline copolyester fibers on thermo-mechanical properties and morphology

A series of thermotropic liquid crystal copolyesters (Co-TLCPs) was prepared by melt polymerization using 2,5-diethoxyterephthalic acid (DTA), 2,7-dihydroxynaphthalene (DHN), and p-hydroxybenzoic acid (HBA) monomers, where the HBA content was varied (0–5 mol). At 3 mol HBA, the Co-TLCPs formed nemat...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sanghyeon, Na, Yeji, Kim, A Young, Kwac, Lee Ku, Kim, Hong Gun, Chang, Jin-Hae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338994/
https://www.ncbi.nlm.nih.gov/pubmed/35908090
http://dx.doi.org/10.1038/s41598-022-17431-5
Descripción
Sumario:A series of thermotropic liquid crystal copolyesters (Co-TLCPs) was prepared by melt polymerization using 2,5-diethoxyterephthalic acid (DTA), 2,7-dihydroxynaphthalene (DHN), and p-hydroxybenzoic acid (HBA) monomers, where the HBA content was varied (0–5 mol). At 3 mol HBA, the Co-TLCPs formed nematic mesophases, while below this concentration, the liquid crystalline phase did not appear. The Co-TLCP sample with 3 mol HBA was subjected to melt spinning and heat-treated under various conditions (temperature and time) to investigate their effect on the thermo–mechanical properties and degree of crystallinity. The objective was to determine the critical heat treatment condition that can maximize the properties of the spun Co-TLCP fibers. The microstructure of the heat-treated fiber was investigated using scanning electron microscopy, and the optimal annealing conditions were confirmed based on the morphology of the fiber, which exhibited a skin–core structure owing to the varying heat and pressure conditions applied during spinning.