Cargando…

ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of h...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Gallo, Esteban, Merson, Laura, Kennon, Kalynn, Kelly, Sadie, Citarella, Barbara Wanjiru, Fryer, Daniel Vidali, Shrapnel, Sally, Lee, James, Duque, Sara, Fuentes, Yuli V., Balan, Valeria, Smith, Sue, Wei, Jia, Gonçalves, Bronner P., Russell, Clark D., Sigfrid, Louise, Dagens, Andrew, Olliaro, Piero L., Baruch, Joaquin, Kartsonaki, Christiana, Dunning, Jake, Rojek, Amanda, Rashan, Aasiyah, Beane, Abi, Murthy, Srinivas, Reyes, Luis Felipe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339000/
https://www.ncbi.nlm.nih.gov/pubmed/35908040
http://dx.doi.org/10.1038/s41597-022-01534-9
_version_ 1784760088477564928
author Garcia-Gallo, Esteban
Merson, Laura
Kennon, Kalynn
Kelly, Sadie
Citarella, Barbara Wanjiru
Fryer, Daniel Vidali
Shrapnel, Sally
Lee, James
Duque, Sara
Fuentes, Yuli V.
Balan, Valeria
Smith, Sue
Wei, Jia
Gonçalves, Bronner P.
Russell, Clark D.
Sigfrid, Louise
Dagens, Andrew
Olliaro, Piero L.
Baruch, Joaquin
Kartsonaki, Christiana
Dunning, Jake
Rojek, Amanda
Rashan, Aasiyah
Beane, Abi
Murthy, Srinivas
Reyes, Luis Felipe
author_facet Garcia-Gallo, Esteban
Merson, Laura
Kennon, Kalynn
Kelly, Sadie
Citarella, Barbara Wanjiru
Fryer, Daniel Vidali
Shrapnel, Sally
Lee, James
Duque, Sara
Fuentes, Yuli V.
Balan, Valeria
Smith, Sue
Wei, Jia
Gonçalves, Bronner P.
Russell, Clark D.
Sigfrid, Louise
Dagens, Andrew
Olliaro, Piero L.
Baruch, Joaquin
Kartsonaki, Christiana
Dunning, Jake
Rojek, Amanda
Rashan, Aasiyah
Beane, Abi
Murthy, Srinivas
Reyes, Luis Felipe
collection PubMed
description The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.
format Online
Article
Text
id pubmed-9339000
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93390002022-08-01 ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19 Garcia-Gallo, Esteban Merson, Laura Kennon, Kalynn Kelly, Sadie Citarella, Barbara Wanjiru Fryer, Daniel Vidali Shrapnel, Sally Lee, James Duque, Sara Fuentes, Yuli V. Balan, Valeria Smith, Sue Wei, Jia Gonçalves, Bronner P. Russell, Clark D. Sigfrid, Louise Dagens, Andrew Olliaro, Piero L. Baruch, Joaquin Kartsonaki, Christiana Dunning, Jake Rojek, Amanda Rashan, Aasiyah Beane, Abi Murthy, Srinivas Reyes, Luis Felipe Sci Data Data Descriptor The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use. Nature Publishing Group UK 2022-07-30 /pmc/articles/PMC9339000/ /pubmed/35908040 http://dx.doi.org/10.1038/s41597-022-01534-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Garcia-Gallo, Esteban
Merson, Laura
Kennon, Kalynn
Kelly, Sadie
Citarella, Barbara Wanjiru
Fryer, Daniel Vidali
Shrapnel, Sally
Lee, James
Duque, Sara
Fuentes, Yuli V.
Balan, Valeria
Smith, Sue
Wei, Jia
Gonçalves, Bronner P.
Russell, Clark D.
Sigfrid, Louise
Dagens, Andrew
Olliaro, Piero L.
Baruch, Joaquin
Kartsonaki, Christiana
Dunning, Jake
Rojek, Amanda
Rashan, Aasiyah
Beane, Abi
Murthy, Srinivas
Reyes, Luis Felipe
ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title_full ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title_fullStr ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title_full_unstemmed ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title_short ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
title_sort isaric-covid-19 dataset: a prospective, standardized, global dataset of patients hospitalized with covid-19
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339000/
https://www.ncbi.nlm.nih.gov/pubmed/35908040
http://dx.doi.org/10.1038/s41597-022-01534-9
work_keys_str_mv AT isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT garciagalloesteban isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT mersonlaura isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT kennonkalynn isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT kellysadie isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT citarellabarbarawanjiru isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT fryerdanielvidali isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT shrapnelsally isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT leejames isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT duquesara isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT fuentesyuliv isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT balanvaleria isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT smithsue isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT weijia isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT goncalvesbronnerp isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT russellclarkd isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT sigfridlouise isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT dagensandrew isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT olliaropierol isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT baruchjoaquin isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT kartsonakichristiana isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT dunningjake isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT rojekamanda isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT rashanaasiyah isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT beaneabi isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT murthysrinivas isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19
AT reyesluisfelipe isariccovid19datasetaprospectivestandardizedglobaldatasetofpatientshospitalizedwithcovid19