Cargando…
DeepPVC: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network
BACKGROUND: Partial volume correction with anatomical magnetic resonance (MR) images (MR-PVC) is useful for accurately quantifying tracer uptake on brain positron emission tomography (PET) images. However, MR segmentation processes for MR-PVC are time-consuming and prevent the widespread clinical us...
Autores principales: | Matsubara, Keisuke, Ibaraki, Masanobu, Kinoshita, Toshibumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339068/ https://www.ncbi.nlm.nih.gov/pubmed/35907100 http://dx.doi.org/10.1186/s40658-022-00478-8 |
Ejemplares similares
-
Iterative framework for image registration and partial volume correction in brain positron emission tomography
por: Matsubara, Keisuke, et al.
Publicado: (2020) -
Prediction of an oxygen extraction fraction map by convolutional neural network: validation of input data among MR and PET images
por: Matsubara, Keisuke, et al.
Publicado: (2021) -
Brain partial volume correction with point spreading function reconstruction in high-resolution digital PET: comparison with an MR-based method in FDG imaging
por: Ibaraki, Masanobu, et al.
Publicado: (2022) -
Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: A comparative (15)O positron emission tomography study
por: Ibaraki, Masanobu, et al.
Publicado: (2018) -
Validation of a simplified scatter correction method for 3D brain PET with (15)O
por: Ibaraki, Masanobu, et al.
Publicado: (2016)