Cargando…

Visual-spatial dimension integration in digital pathology education enhances anatomical pathology learning

Literature review demonstrated a surprising lack of publications on digital e-learning pathology resources for senior medical undergraduates and interns. An interactive Digital Pathology Repository (iDPR) integrating two- and three-dimensional (2D, 3D) high-resolution anatomical pathology images wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Ken Lee, Sen, Arkendu, Selvaratnam, Lakshmi, Naing, Mohd Imran Mohd, Khoo, Joon Joon, Rajadurai, Pathmanathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339176/
https://www.ncbi.nlm.nih.gov/pubmed/35907832
http://dx.doi.org/10.1186/s12909-022-03545-x
Descripción
Sumario:Literature review demonstrated a surprising lack of publications on digital e-learning pathology resources for senior medical undergraduates and interns. An interactive Digital Pathology Repository (iDPR) integrating two- and three-dimensional (2D, 3D) high-resolution anatomical pathology images with correlated digital histopathology was developed. The novel iDPR was rigorously evaluated using mixed methods to assess pathology knowledge gains (pre- and post-tests), quality impact analysis (questionnaire), user feedback (focus group discussions) and user visual behaviour (eye gaze tracking analysis of 2D/ 3D images). Exposure to iDPR appeared to improve user pathology knowledge, as observed by significantly increased test scores on topic-related quizzes (n = 69, p < 0.001). In addition, most users were highly satisfied with the key design elements of the iDPR tool. Focus group discussion revealed the iDPR was regarded as a relevant online learning resource, although some minor technical issues were also noted. Interestingly, visual behaviour trends indicated that specific diagnostic pathological lesions could be correctly identified faster in 3D images, when compared to 2D images. The iDPR offers promise and potential in pathology education for senior clinical students and interns, gauging from both qualitative and quantitative positive user feedback. With incorporation of image annotations and interactive functionality, and with further technology development, this would prove a useful tool for diagnostic pathology and telepathology. As images with added visual-spatial dimension can provide enhanced detail and aid more rapid diagnosis, future applications of the iDPR could include virtual reality or holographic images of anatomical pathology specimens. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12909-022-03545-x.