Cargando…

Curcumin enhances p-cresyl sulfate-induced cytotoxic effects on renal tubular cells

Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), protein-bound uremic toxins, can induce oxidative stress and cause renal disease progression. However, the different cytotoxic effects on renal cells between IS and PCS are not stated. Due to uremic toxins are generally found in CKD patients, the mech...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Chyou-Wei, Wu, Tsai-Kun, Wu, Shu-Cing, Chen, Yi-Lin, Pan, Ying-Ru, Chien, Yi-Chung, Wu, Jia-Yan, Yu, Yung‑Lung, Yiang, Giou-Teng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339410/
https://www.ncbi.nlm.nih.gov/pubmed/35919818
http://dx.doi.org/10.7150/ijms.72646
Descripción
Sumario:Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), protein-bound uremic toxins, can induce oxidative stress and cause renal disease progression. However, the different cytotoxic effects on renal cells between IS and PCS are not stated. Due to uremic toxins are generally found in CKD patients, the mechanisms of uremic toxins-induced renal injury are required to study. Curcumin has anti-oxidant, anti-inflammatory and anti-apoptotic effects which may be potential used to protect against renal damage. In contrast, curcumin also exert cytotoxic effects on various cells. In addition, curcumin may reduce or enhance cytotoxicity combined with different chemicals treatments. However, whether curcumin may influence uremic toxins-induced renal injury is unclear. The goal of this study is to compare the different cytotoxic effects on renal cells between IS and PCS treatment, as well as the synergistic or antagonistic effects by combination treatments with curcumin and PCS. Our experimental result shows the PCS exerts a stronger antiproliferative effect on renal tubular cells than IS treatment. In addition, our study firstly demonstrates that curcumin enhances PCS-induced cell cytotoxicity through caspase-dependent apoptotic pathway and cell cycle alteration.