Cargando…
Preoperative Non-Invasive Prediction of Breast Cancer Molecular Subtypes With a Deep Convolutional Neural Network on Ultrasound Images
PURPOSE: This study aimed to develop a deep convolutional neural network (DCNN) model to classify molecular subtypes of breast cancer from ultrasound (US) images together with clinical information. METHODS: A total of 1,012 breast cancer patients with 2,284 US images (center 1) were collected as the...
Autores principales: | Li, Chunxiao, Huang, Haibo, Chen, Ying, Shao, Sihui, Chen, Jing, Wu, Rong, Zhang, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339685/ https://www.ncbi.nlm.nih.gov/pubmed/35924158 http://dx.doi.org/10.3389/fonc.2022.848790 |
Ejemplares similares
-
Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images
por: Wu, Meijing, et al.
Publicado: (2023) -
Ultrasound features for prediction of long-term outcomes of women with primary breast cancer <20 mm
por: Shao, Sihui, et al.
Publicado: (2023) -
A Convolutional Neural Network Based on Ultrasound Images of Primary Breast Masses: Prediction of Lymph-Node Metastasis in Collaboration With Classification of Benign and Malignant Tumors
por: Li, Chunxiao, et al.
Publicado: (2022) -
Deep Convolutional Neural Network Based on Computed Tomography Images for the Preoperative Diagnosis of Occult Peritoneal Metastasis in Advanced Gastric Cancer
por: Huang, Zixing, et al.
Publicado: (2020) -
Value of Contrast-Enhanced Ultrasound in the Preoperative Evaluation of Papillary Thyroid Carcinoma Invasiveness
por: Chen, Lei, et al.
Publicado: (2022)