Cargando…
A Multicenter Clinical Study of the Automated Fundus Screening Algorithm
PURPOSE: To evaluate the effectiveness of automated fundus screening software in detecting eye diseases by comparing the reported results against those given by human experts. RESULTS: There were 1585 subjects who completed the procedure and yielded qualified images. The prevalence of referable diab...
Autores principales: | Li, Fei, Pan, Jianying, Yang, Dalu, Wu, Junde, Ou, Yiling, Li, Huiting, Huang, Jiamin, Xie, Huirui, Ou, Dongmei, Wu, Xiaoyi, Wu, Binghong, Sun, Qinpei, Fang, Huihui, Yang, Yehui, Xu, Yanwu, Luo, Yan, Zhang, Xiulan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339691/ https://www.ncbi.nlm.nih.gov/pubmed/35881410 http://dx.doi.org/10.1167/tvst.11.7.22 |
Ejemplares similares
-
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023) -
Fundus Tessellated Density Assessed by Deep Learning in Primary School Children
por: Huang, Dan, et al.
Publicado: (2023) -
Deep Learning Model for Static Ocular Torsion Detection Using Synthetically Generated Fundus Images
por: Wang, Chen, et al.
Publicado: (2023) -
Automated analysis of whole slide digital skin biopsy images
por: Nofallah, Shima, et al.
Publicado: (2022) -
The analysis of the structural parameter influences on measurement errors in a binocular 3D reconstruction system: a portable 3D system
por: Sha, Ou, et al.
Publicado: (2023)