Cargando…
Ubiquitin-regulating effector proteins from Legionella
Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated subs...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340081/ https://www.ncbi.nlm.nih.gov/pubmed/35651329 http://dx.doi.org/10.5483/BMBRep.2022.55.7.054 |
Sumario: | Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell’s cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms. |
---|