Cargando…
Improved seagull optimization algorithm of partition and XGBoost of prediction for fuzzy time series forecasting of COVID-19 daily confirmed
The establishment of fuzzy relations and the fuzzification of time series are the top priorities of the model for predicting fuzzy time series. A lot of literature studied these two aspects to ameliorate the capability of the forecasting model. In this paper, we proposed a new method(FTSOAX) to fore...
Autores principales: | Xian, Sidong, Chen, Kaiyuan, Cheng, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340105/ https://www.ncbi.nlm.nih.gov/pubmed/35936352 http://dx.doi.org/10.1016/j.advengsoft.2022.103212 |
Ejemplares similares
-
Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19
por: Kumar, Naresh, et al.
Publicado: (2021) -
Optimal Performance and Application for Seagull Optimization Algorithm Using a Hybrid Strategy
por: Xia, Qingyu, et al.
Publicado: (2022) -
Jonathan Livingston Seagull /
por: Bach, Richard
Publicado: (1973) -
Seagulls of endoscopic ultrasound
por: Pathak, Amit, et al.
Publicado: (2017) -
Automatic Detection of Tuberculosis Using VGG19 with Seagull-Algorithm
por: Mohan, Ramya, et al.
Publicado: (2022)