Cargando…
Optimal design and planning of supply chains for viral vectors and RNA vaccines
This work develops a multi-product MILP vaccine supply chain model that supports planning, distribution, and administration of viral vectors and RNA-based vaccines. The capability of the proposed vaccine supply chain model is illustrated using a real-world case study on vaccination against SARS-CoV-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340304/ http://dx.doi.org/10.1016/B978-0-323-95879-0.50273-3 |
Sumario: | This work develops a multi-product MILP vaccine supply chain model that supports planning, distribution, and administration of viral vectors and RNA-based vaccines. The capability of the proposed vaccine supply chain model is illustrated using a real-world case study on vaccination against SARS-CoV-2 in the UK that concerns both viral vectors (e.g., AZD1222 developed by Oxford-AstraZeneca) and RNA-based vaccine (e.g., BNT162b2 developed by Pfizer-BioNTech). A comparison is made between the resources required and logistics costs when viral vectors and RNA vaccines are used during the SARS-CoV-2 vaccination campaign. Analysis of results shows that the logistics cost of RNA vaccines is 85% greater than that of viral vectors, and that transportation cost dominates logistics cost of RNA vaccines compared to viral vectors. |
---|