Cargando…

Drug‐resistant epilepsy and the hypothesis of intrinsic severity: What about the high‐frequency oscillations?

Drug‐resistant epilepsy (DRE) affects approximately one‐third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Santana‐Gomez, Cesar E., Engel, Jerome, Staba, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340307/
https://www.ncbi.nlm.nih.gov/pubmed/34861102
http://dx.doi.org/10.1002/epi4.12565
Descripción
Sumario:Drug‐resistant epilepsy (DRE) affects approximately one‐third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high‐frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.