Cargando…
Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer
Purpose: To evaluate the accuracy of deep-learning-based auto-segmentation of the superior constrictor, middle constrictor, inferior constrictor, and larynx in comparison with a traditional multi-atlas-based method. Methods and Materials: One hundred and five computed tomography image datasets from...
Autores principales: | Li, Yimin, Rao, Shyam, Chen, Wen, Azghadi, Soheila F., Nguyen, Ky Nam Bao, Moran, Angel, Usera, Brittni M, Dyer, Brandon A, Shang, Lu, Chen, Quan, Rong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340321/ https://www.ncbi.nlm.nih.gov/pubmed/35790457 http://dx.doi.org/10.1177/15330338221105724 |
Ejemplares similares
-
Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images
por: Chen, Wen, et al.
Publicado: (2020) -
Technical note: Atlas‐based Auto‐segmentation of masticatory muscles for head and neck cancer radiotherapy
por: Zhang, Xiangguo, et al.
Publicado: (2020) -
Combined Immune Checkpoint Blockade and Stereotactic Ablative Radiotherapy Can Stimulate Response to Immunotherapy in Metastatic Melanoma: A Case Report
por: Moran, Angel, et al.
Publicado: (2019) -
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy
por: Chen, Wen, et al.
Publicado: (2021) -
Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study
por: Kim, Won-Seok, et al.
Publicado: (2017)