Cargando…
Federated learning for computational pathology on gigapixel whole slide images
Deep Learning-based computational pathology algorithms have demonstrated profound ability to excel in a wide array of tasks that range from characterization of well known morphological phenotypes to predicting non human-identifiable features from histology such as molecular alterations. However, the...
Autores principales: | Lu, Ming Y., Chen, Richard J., Kong, Dehan, Lipkova, Jana, Singh, Rajendra, Williamson, Drew F.K., Chen, Tiffany Y., Mahmood, Faisal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340569/ https://www.ncbi.nlm.nih.gov/pubmed/34911013 http://dx.doi.org/10.1016/j.media.2021.102298 |
Ejemplares similares
-
Virtual alignment of pathology image series for multi-gigapixel whole slide images
por: Gatenbee, Chandler D., et al.
Publicado: (2023) -
Fast and scalable search of whole-slide images via self-supervised deep learning
por: Chen, Chengkuan, et al.
Publicado: (2022) -
Histo-fetch – on-the-fly processing of gigapixel whole slide images simplifies and speeds neural network training
por: Lutnick, Brendon, et al.
Publicado: (2022) -
Fast cross-staining alignment of gigapixel whole slide images with application to prostate cancer and breast cancer analysis
por: Wang, Ching-Wei, et al.
Publicado: (2022) -
A Decade of GigaScience: The Challenges of Gigapixel Pathology Images
por: Litjens, Geert, et al.
Publicado: (2022)