Cargando…
Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference
Accurate inference of gene regulatory networks (GRNs) is important to unravel unknown regulatory mechanisms and processes, which can lead to the identification of treatment targets for genetic diseases. A variety of GRN inference methods have been proposed that, under suitable data conditions, perfo...
Autores principales: | Seçilmiş, Deniz, Nelander, Sven, Sonnhammer, Erik L. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340570/ https://www.ncbi.nlm.nih.gov/pubmed/35923701 http://dx.doi.org/10.3389/fgene.2022.855770 |
Ejemplares similares
-
Inferring the experimental design for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2021) -
Fast and accurate gene regulatory network inference by normalized least squares regression
por: Hillerton, Thomas, et al.
Publicado: (2022) -
Knowledge of the perturbation design is essential for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2022) -
Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data
por: Seçilmiş, Deniz, et al.
Publicado: (2020) -
GRNbenchmark - a web server for benchmarking directed gene regulatory network inference methods
por: Seçilmiş, Deniz, et al.
Publicado: (2022)