Cargando…
DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection
Fake news detection mainly relies on the extraction of article content features with neural networks. However, it has brought some challenges to reduce the noisy data and redundant features, and learn the long-distance dependencies. To solve the above problems, Dual-channel Convolutional Neural Netw...
Autores principales: | Ma, Kun, Tang, Changhao, Zhang, Weijuan, Cui, Benkuan, Ji, Ke, Chen, Zhenxiang, Abraham, Ajith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340725/ https://www.ncbi.nlm.nih.gov/pubmed/35937201 http://dx.doi.org/10.1007/s10489-022-03910-9 |
Ejemplares similares
-
Intra-graph and Inter-graph joint information propagation network with third-order text graph tensor for fake news detection
por: Cui, Benkuan, et al.
Publicado: (2023) -
Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection
por: Fang, Yong, et al.
Publicado: (2019) -
FakeStack: Hierarchical Tri-BERT-CNN-LSTM stacked model for effective fake news detection
por: Keya, Ashfia Jannat, et al.
Publicado: (2023) -
Long text feature extraction network with data augmentation
por: Tang, Changhao, et al.
Publicado: (2022) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020)