Cargando…
A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
Complementary and redundant relationships inherently exist between multi-modal medical images captured from the same brain. Fusion processes conducted on intermingled representations can cause information distortion and the loss of discriminative modality information. To fully exploit the interdepen...
Autores principales: | Wang, Anqi, Luo, Xiaoqing, Zhang, Zhancheng, Wu, Xiao-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340788/ https://www.ncbi.nlm.nih.gov/pubmed/35924221 http://dx.doi.org/10.3389/fnins.2022.937861 |
Ejemplares similares
-
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
MCPeSe: Monte Carlo penalty selection for graphical lasso
por: Kuismin, Markku, et al.
Publicado: (2020) -
An Improved Fusion Paired Group Lasso Structured Sparse Canonical Correlation Analysis Based on Brain Imaging Genetics to Identify Biomarkers of Alzheimer’s Disease
por: Wang, Shuaiqun, et al.
Publicado: (2022) -
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020) -
Corrigendum: Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020)