Cargando…
Poster 242: Deep Learning for Identifying Patellofemoral Measurements Associated with Cartilage Lesions on MRI
OBJECTIVES: Magnetic resonance imaging (MRI) enables patellofemoral joint (PFJ) geometric measurements that may guide metrics of operative treatments, such as anteromedialization osteotomy, offloading stress on PFJs with chondral defects. However, utilization of MRI is limited due to expense require...
Autores principales: | Martinez, Alejandro Morales, Caliva, Francesco, Pedoia, Valentina, Lansdown, Drew, Namiri, Nikan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341002/ http://dx.doi.org/10.1177/2325967121S00803 |
Ejemplares similares
-
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
por: Namiri, Nikan K., et al.
Publicado: (2021) -
Comparing bone shape models from deep learning processing of magnetic resonance imaging to computed tomography-based models
por: Wong, Victoria, et al.
Publicado: (2023) -
Poster 290: Effect of Platelet-rich Plasma Injections on Cartilage T1rho in Knee Osteoarthritis
por: Tong, Michelle, et al.
Publicado: (2023) -
Anteriorizing Tibial Tubercle Osteotomy for Patellofemoral Cartilage Lesions
por: Patel, Ronak M., et al.
Publicado: (2021) -
Uncovering associations between data-driven learned qMRI biomarkers and chronic pain
por: Morales, Alejandro G., et al.
Publicado: (2021)